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Abstract

The spectrum of the Hermitian Hamiltonian H = p2 +V (x) is real and discrete
if the potential V (x) → ∞ as x → ±∞. However, if V (x) is complex and
PT -symmetric, it is conjectured that, except in rare special cases, V (x) must
be analytic in order to have a real spectrum. This conjecture is demonstrated
by using the potential V (x) = (ix)a|x|b, where a, b are real.

PACS number: 11.30.Er

1. Introduction

The field of PT quantum mechanics [1] has attracted significant interest in recent years and
a large community of active researchers has developed. This area of study began with the
observation that the complex PT -symmetric non-Hermitian Hamiltonian

H = p2 + x2(ix)ε (ε � 0) (1)

has a positive real discrete eigenspectrum [2, 3]. The property of PT symmetry is not
sufficient to guarantee that the eigenvalues of a non-Hermitian Hamiltonian are real; PT
symmetry merely ensures that the secular determinant det(H − 11E) is a real function of E
[5]. The eigenvalues of H are the roots of

det(H − 11E) = 0, (2)

and thus the condition of PT symmetry implies that the eigenvalues are either real or come
in complex-conjugate pairs. If the eigenvalues of a PT -symmetric Hamiltonian are all real,
we say that the Hamiltonian has an unbroken PT symmetry, but if there are any complex
eigenvalues, we say that the PT symmetry of H is broken.

Lacking further information, one would expect (2) to have some complex roots. Thus,
it was surprising to find that the class of PT -symmetric Hamiltonians (1) has an entirely
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real spectrum. In [2–4] numerical evidence and detailed perturbative asymptotic analysis was
presented to show that the eigenvalues of the Hamiltonian (1) are real when ε � 0. A rigorous
proof that these eigenvalues are all real was given by Dorey et al [6, 7].

Using the WKB quantization condition
∫ x2

x1

dx
√

E − V (x) =
(

n +
1

2

)
π, (3)

where x1 and x2 are the turning points (roots of V (x)−E = 0), one can understand heuristically
why the eigenvalues of H in (1) cease to be real when ε < 0. The quantization condition (3)
requires that there be a continuous integration contour from x1 to x2. Such a contour exists for
ε � 0, but as soon as ε goes below 0, the contour joining x1 and x2 is broken by the existence
of a branch cut in the complex-x plane and there is no longer a finite-length path connecting
the turning points.

The discovery that the eigenvalues of H in (1) are real led to a search for and subsequent
study of other non-Hermitian PT -symmetric Hamiltonians whose spectra are also real
[8–20]. We emphasize that the reality of the eigenspectrum is an unusual property of a
complex Hamiltonian and that many PT -symmetric Hamiltonians do not have entirely real
spectra. For example, while the ix2y potential studied in [21, 22] has a real ground-state
energy, it has recently been found that some of the other eigenvalues are complex [23].

In this paper we conjecture that analyticity of the potential is a necessary (but not sufficient)
criterion for a non-Dirac-Hermitian Hamiltonian to have real eigenvalues. This conjecture
is based on extensive numerical studies in which we have found that, except in rare cases, a
PT -symmetric Hamiltonian H = p2 +V (x) does not have a real spectrum if its potential V (x)

is not an analytic function of x. An example of such a nonanalytic PT -symmetric potential,
which is discussed in section 2, is

V (x) = ix|x|. (4)

We show in section 2 that this potential has only one real eigenvalue.
A heuristic explanation of the role played by analyticity can be based on the WKB contour

integral in (3). For complex PT -symmetric potentials the derivation and application of this
integral makes explicit use of the analyticity of the potential. Of course, the potential of a
Hermitian Hamiltonian need not be analytic because its turning points lie on the real axis.
Here, the integral for the WKB quantization condition is unambiguously taken along the real
axis and does not need to be deformed into the complex plane. By contrast, the turning points
for a complex potential are likely to be complex, and thus the contour for the WKB integral
necessarily lies off the real axis. Giving up Hermiticity forces the quantization condition (3)
into the complex plane and thus introduces the requirement of path independence and hence
analyticity.

The square-well potential studied by Znojil in [8] is a rare example of a complex
nonanalytic PT -symmetric potential having a real spectrum. This potential evades the
conjecture above simply because there are no turning points at all; for the square-well potential
there is no solution to the equation V (x) = E.

This paper is organized very simply. In section 2 we examine the exactly solvable
nonanalytic potential in (4) and in section 3 we present numerical results for the class of
nonanalytic PT -symmetric potentials

V (x) = (ix)a|x|b (a, b real). (5)

In section 4 we make some brief concluding remarks.
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2. An exactly solvable nonanalytic potential

In this section we consider the PT -symmetric Hamiltonian

H = p2 + ix|x|, (6)

whose potential is a nonanalytic function of x. The Schrödinger eigenvalue differential
equation associated with this Hamiltonian is(

− d2

dx2
+ ix|x| − E

)
ψ(x) = 0, (7)

where x is real and where the eigenfunction ψ(x) is required to obey the boundary conditions
that ψ → 0 as x → ±∞.

To solve this differential equation, we partition the real axis into two regions. In the
region x > 0 the differential equation (7) takes the form(

− d2

dx2
+ ix2 − E

)
ψ(x) = 0 (8)

and the exact solution is

ψ(x) = c1Dν(x eiπ/8
√

2) + c2Dν(−x eiπ/8
√

2). (9)

Here, Dν is the parabolic cylinder function with

ν = 1
2E e−iπ/4 − 1

2 , (10)

and c1 and c2 are arbitrary constants. The boundary condition limx→+∞ ψ(x) = 0 implies that
c2 = 0. Thus, for x > 0 we have

ψ(x) = c1Dν(x eiπ/8
√

2). (11)

Similarly, in the region x < 0 the differential equation (7) becomes(
− d2

dx2
− ix2 − E

)
ψ(x) = 0, (12)

whose exact solution is

ψ(x) = d1Dμ(x e−iπ/8
√

2) + d2Dμ(−x e−iπ/8
√

2). (13)

Here,

μ = 1
2 eiπ/4E − 1

2 , (14)

and d1 and d2 are arbitrary constants. The boundary condition limx→−∞ ψ(x) = 0 implies
that d1 = 0. Thus, for x < 0 we have

ψ(x) = d2Dμ(−x e−iπ/8
√

2). (15)

We must patch the two solutions (11) and (15) together at the origin x = 0. Continuity of
ψ(x) at x = 0 implies that

c1Dν(0) = d2Dμ(0), (16)

and continuity of ψ ′(x) at x = 0 implies that

c1 eiπ/8D′
ν(0) = −d2 e−iπ/8D′

μ(0). (17)

Taking the ratio of (17) and (16) eliminates the constants c1 and d2 and gives the following
exact equation for the eigenvalues:

eiπ/8D′
ν(0)

Dν(0)
= −e−iπ/8D′

μ(0)

Dμ(0)
. (18)
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Figure 1. Numerical solution to the secular equation (19) for the eigenvalues of the Hamiltonian
H = p2 +ix|x|. The solid line is the region in the complex-E plane where the real part of the secular
determinant vanishes. The dotted line indicates where the imaginary part of the secular equation
vanishes. The intersections of the solid and dotted lines are the eigenvalues. There is one real
eigenvalue, which is located at E = 1.258 092. All other eigenvalues come in complex-conjugate
pairs.

(This figure is in colour only in the electronic version)

This condition can be rewritten simply in terms of Gamma functions as

eiπ/8 �
(

3
4 − 1

4E e−iπ/4
)

�
(

1
4 − 1

4E e−iπ/4
) + e−iπ/8 �

(
3
4 − 1

4E eiπ/4
)

�
(

1
4 − 1

4E eiπ/4
) = 0. (19)

As required by PT symmetry, the secular equation (19) is a real function of E. This is so
because it is the sum of two terms that are complex conjugates of each other.

To solve (19) for E, we substitute E = Re E +i Im E and take the real and imaginary parts
of the resulting equation. We then plot in figure 1 the curves in the complex-E plane along
which the real part of (19) vanishes (solid line) and the imaginary part of (19) vanishes (dotted
line). (Of course, the condition of PT symmetry requires that the dotted line lie along the
real-E axis. However, note that the real-E axis is not the only curve along which the imaginary
part of (19) vanishes.)

The intersections of the solid and dotted lines in figure 1 are the eigenvalues of H in (6).
Note that there is only one real eigenvalue; all other intersections occur in complex-conjugate
pairs. The numerical value of the real eigenvalue is

E0 = 1.258 092 . . . . (20)

Note that for this real value of the energy the eigenfunction is PT symmetric. This
can be seen immediately by examination of the eigenfunction in (11) and (15). Thus, if we
reverse the sign of x and simultaneously take the complex conjugate, the eigenfunction remains
unchanged.
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Table 1. Real eigenvalues for the Hamiltonian H = p2 + (ix)a |x|b in (21), where a = 0. The
symbol . . . indicates that the spectrum is entirely real and that the list of real eigenvalues is infinite.

Ei b = 1/2 b = 1 b = 3/2 b = 2 b = 5/2 b = 3

a = 0 1.059617 1.01879 1.00118 1 1.00859 1.02295
1.833394 2.33811 2.70809 3 3.24223 3.45056
2.210015 3.24820 4.17714 5 5.72682 6.37029
2.550647 4.08795 5.58566 7 8.31328 9.52208
3.051182 4.82010 6.92282 9 10.9916 12.8703
3.253157 5.52056 8.22687 11 13.7342 16.3694
3.452132 6.16331 9.49059 13 16.5353 20.0009
3.623138 7.37218 10.7317 15 19.3837 23.7455
3.793400 8.48849 11.9453 17 22.2757 27.5924
3.943821 9.53546 13.1419 19 25.2052 31.5308

· · · · · · · · · 21 28.1698 35.5535
23 31.1655 39.6536
25 34.1908 43.8258
27 37.2428 48.0654
29 40.3203 52.3684
31 43.4214 56.7311
33 46.5449 61.1507
35 49.6894 65.6241
37 52.8541 70.1491
39 56.0377 74.7232
41 · · · 79.3445
43 84.0112
45 88.7215
· · · 93.4738

98.2668
· · ·

3. Numerical study of a class of nonanalytic potentials

In this section we examine numerically the eigenvalue differential equation for the complex
PT -symmetric non-Hermitian Hamiltonian

H = p2 + (ix)a|x|b, (21)

where a and b are real parameters.
We begin by determining the appropriate PT -symmetric boundary conditions to be

imposed on the eigenfunctions of H in (21). Using WKB analysis, we find the possible
asymptotic behaviors of the eigenfunction ψ(x) satisfying the time-independent Schrödinger
equation (

− d2

dx2
+ (ix)a|x|b − E

)
ψ(x) = 0. (22)

For example, when x > 0, the controlling factor of the asymptotic behavior of ψ(x) as
x → +∞ is

exp

[
± 2

a + b + 2
ia/2x(a+b+2)/2

]
. (23)
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Table 2. Real eigenvalues for the Hamiltonian H = p2 + (ix)a |x|b in (21), where a = 1/2. The
eigenvalues in bold type are the largest of all the real eigenvalues; when an eigenvalue is given
in bold type all of the real eigenvalues are listed. As in table 1, the symbol . . . indicates that the
spectrum is entirely real and infinite.

Ei b = 1/2 b = 1 b = 3/2 b = 2 b = 5/2 b = 3

a = 1/2 1.180777 1.08693 1.05583 1.04896 1.05404 1.06568
3.19578 3.27843 3.43454 3.59460 3.74791
4.4220 5.36421 6.05174 6.64515 7.17496

7.67568 8.79101 9.91884 10.9735
9.53919 11.6207 13.4256 15.1112

14.5219 17.0514 19.4889
17.4829 20.8691 24.1139
20.4952 24.7239 28.9111
23.5529 28.8137 33.9218
26.6504 32.7868 39.0482
29.7848 37.2141 44.3936
32.9526 41.0803 49.7770
36.1511 46.2256 55.4476
39.3784 60.9963
42.6321 67.0561
45.9112 72.5848

· · · 79.2958
84.3126
92.7345

Table 3. Same as in tables 1 and 2 except that a = 1 and a = 3/2.

Ei b = 1/2 b = 1 b = 3/2 b = 2 b = 5/2 b = 3

a = 1 1.446448 1.25809 1.18627 1.15627 1.14615 1.14685
4.21683 4.10923 4.13051 4.19436
6.93323 7.56227 7.95153 8.30206

11.3144 12.0844 12.9101
15.2916 16.8072 18.1062
19.4515 21.3065 23.5322
23.7667 27.4779 29.6147
28.2175 30.3268 35.3873
32.7891 42.9034
37.4698 47.4048

42.2504
· · ·

a = 3/2 1.791941 1.48873 1.36338 1.30151 1.26993 1.2550
5.52801 4.96979 4.80096 4.7494
8.50818 9.48003 9.60759 9.7042

14.5305 14.6672 15.2406
19.9977 21.7069 21.8910
25.8103 24.9567 28.1147

31.9205
38.2938
44.9038

· · ·
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Figure 2. Real eigenvalues, indicated by circles, for the Hamiltonian H = p2 + (ix)a |x|b in (21).
The data for this figure is taken from tables 1–3. When a circle representing an eigenvalue is filled,
this indicates that there are no more real eigenvalues in the tower. Notice that the number of real
eigenvalues increases with increasing b and decreases with increasing a.

Thus, for a < 2 there exists a solution that grows exponentially and another that decays
exponentially for large positive x. The same is true for large negative x so long as a < 2. To
determine the eigenvalues for a < 2 we impose the boundary conditions that ψ(x) → 0 as
|x| → ∞ on the real-x axis. Note that because the potential is not an analytic function of x,
the notion of Stokes’ wedges in the complex-x plane in which the boundary conditions are
imposed is not applicable.

We have calculated the eigenvalues for various values of a and b and our results are listed
in tables 1 and 2 and plotted in figure 2. Clearly, when b is an even integer, the Hamiltonian
in (21) reduces to that in (1) and it has an entirely real spectrum. However, for other values
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of b, when a �= 0 there are only a finite number of real eigenvalues. The number of real
eigenvalues decreases as a increases, and increases as b increases. It is not clear from figure 2
that this behavior holds when a is small and b = 1

2 , so we have calculated the real eigenvalues
for some additional values of a: when a = 1

4 there is still only one real eigenvalue, but when
a = 1

8 there are two real eigenvalues at 1.064 07 and 2.058 27. When a = 1
16 , there are

three eigenvalues: 1.0582, 2.3488, 3.4132. As a continues to decrease, the number of real
eigenvalues grows until at a = 0 there are an infinite number of real eigenvalues.

4. Concluding remarks

MostPT -symmetric potentials V (x) studied so far in the literature are special because they are
analytic. In this paper we have explored a new class of nonanalytic PT -symmetric potentials
of the form V (x) = (ix)a|x|b, and on the basis of numerical and theoretical calculations we are
led to conjecture that, except in rare cases, analyticity is an essential feature that is necessary
for the Hamiltonian to have a real spectrum.
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